Code: 20EC2601A

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

MATLAB PROGRAMMING

(Common to All Branches)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Explain the various Display formats used in	L2	CO1	7 M		
		MATLAB with examples.					
	b)	Explain about the elementary Math built-in	L2	CO1	7 M		
		functions in MATLAB.					
	OR						
2	a)	Explain the various useful commands for	L2	CO1	7 M		
		managing variables of MATLAB.					
	b)	Write a MATLAB program to find the area	L3	CO2	7 M		
		of circle by executing command by					
		providing an input of desired radius by user.					
UNIT-II							
3	a)	Discuss about creating 2-D array in	L2	CO1	7 M		
		MATLAB.					

	b)	Describe about built-in functions for	L2	CO1	7 M			
		handling arrays in MATLAB.						
OR								
4	a)	Write a MATLAB program to execute array	L3	CO2	7 M			
		multiplication with an example.						
	b)	Write the functions to do the following:	L3	CO4	7 M			
		i. create a 4*4 array A						
		ii. reshape array A to size of 8*2						
		iii. flip array A to the left to right direction						
		UNIT-III						
5	a)	Analyse the logarithmic axis plot in	L4	CO3	7 M			
		MATLAB.						
	b)	Write a MATLAB program to plot	L3	CO4	7 M			
		histogram and polar plot with an example.						
	ı	OR	T					
6	a)	Explain about how to create multiple figure	L4	CO3	7 M			
		windows in MATLAB.						
	b)	Illustrate a MATLAB program to create	L3	CO4	7 M			
		mesh plot.						
		UNIT-IV	T 6	000	7.7.7			
7	a)	Explain about the Nested Loops and Nested	L2	CO2	7 M			
	4 \	conditional statements used in MATLAB.		~				
	b)	Develop a MATLAB program to find the	L3	CO4	7 M			
		largest number.						
OR								
8	a)	Explain, how do you construct a user	L2	CO1	7 M			
		defined function in MATLAB.						

	b)	Develop a MATLAB program to find the	L3	CO4	7 M					
		prime number.								
UNIT-V										
9	a)	Calculating polynomials with MATLAB	L2	CO2	7 M					
		For the polynomial:								
		$f(x) = x^5 - 12.1 \ x^4 + 40.59x^3 - 17.015x^2 - 71.95x + 35.88$								
		i. Calculate f(9)								
		ii. Plot the polynomial for -1.5<=x<=6.7								
	b)	Write steps to solve numerical integration in	L3	CO3	7 M					
		MATLAB with example.								
	OR									
10	a)	Outline different curve fitting techniques	L4	CO3	7 M					
		used in MATLAB.								
	b)	Explain with an example, to find maximum	L3	CO3	7 M					
		or minimum of a function in MATLAB.								